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Abstract: Evolutionary algorithms are powerful tools to optimize parameters and structure of
control laws. However, these approaches are often very costly, or even prohibitive, for expensive
experiments due to long evaluation times and large population sizes. Reducing the learning
time, e.g. by decreasing the number of function evaluations, is a challenging problem as it often
requires additional knowledge on the objective function and assumptions. We address the need
to analyze these algorithms and guide their acceleration through examination of the search space
topology and the exploratory and exploitative nature of the genetic operators. We show how this
gives insights on the convergence and performance behavior of Genetic Programming Control for
the drag reduction of a car model (Li et al., 2016). Profiling machine learning algorithms, that
are very powerful but also more complex to analyze, aids the goal to increase their performance
and making them eventually feasible for a wide range of applications.
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Knowledge discover (data mining), Information processing and decision support

1. INTRODUCTION

Feedback turbulence control is still a challenging en-
deavor due to the high-dimensionality, strong nonlinear-
ities, and time delays of the fluid flows. Most success-
ful control strategies employ adaptive or model-free ap-
proaches and target the optimization of open-loop con-
trollers, not exploiting advantages of in-time flow response
like disturbance mitigation. The recently introduced Ge-
netic Programming Control (GPC) (Gautier et al., 2015;
Parezanović et al., 2016; Duriez et al., 2016), inspired by
machine learning techniques to learn optimal functions
with respect to an objective function using evolutionary
algorithms (Koza, 1992), has been shown to systematically
learn sensor-based feedback control laws in an unsuper-
vised manner by optimizing the structure of the control
law. The reader is referred to (Brunton and Noack, 2015)
for a recent review on closed-loop turbulence control. In
this work, we address the need to tune GPC to decrease
the learning time, which is particularly important for ex-
pensive experiments, where the large number of control
laws to be evaluated and their evaluation time makes
its application very costly, even prohibitive for certain
applications.

The point of departure of GPC is a set of candidate
control laws, referred to as individuals, which are evaluated
to determine their performance, called fitness, and then
evolved using genetic operations like mutation, replication,
cross-over, and elitism (Koza, 1992). While this approach
has been shown to be powerful in finding globally opti-
mal control laws exploiting strong nonlinearities, this is

accompanied by long learning times. The lower bound of
the evaluation time of an individual is limited by the time
duration needed to compute a confident measure of the
average quantity of interest like the average drag or mean
recirculation area. Thus, there is a strong focus on reducing
the number of function evaluations, e.g., by discarding
or approximating the fitness of individuals. Examples are
based on a meta-model of the fitness function (Emmerich
et al., 2002; Ziegler and Banzhaf, 2003; Jin et al., 2002) to
interpolate between or classify individuals, a proxy fitness
for un-evaluated functions using ancestry (Sastry et al.,
2001) or neighborhood information (Kim, 2001), or em-
ploy other statistical and information-theoretic methods
(Giacobini et al., 2002).

In this work, we analyze the performance of GPC through
examination of the search space topology and the ex-
ploratory and exploitative nature of the genetic opera-
tors. We employ Multidimensional Scaling (MDS) (Mardia
et al., 1979; Cox and Cox, 2000) to determine a low-
dimensional subspace in which the distances between con-
trol laws are preserved. This requires a suitable definition
of a (dis)similarity metric between control laws based on
input-output data and their fitness. Delaunay triangula-
tion is then used to approximate the fitness topology on
which the evolution of the control laws is examined. Then,
ancestry information is analyzed to determine the ex-
ploratory and exploitative nature of the genetic operators
in the search space. In addition, we propose a performance
estimator for untested control laws that is assessed in a
post-processing analysis. We analyze data from applying
GPC, particularly the recently introduced Linear Genetic



Programming Control (LGPC), to a turbulent bluff body
flow to reduce drag (Li et al., 2016). This analysis gives
insights into the degree of exploration due to the different
genetic operators and may guide future improvements in
the learning time.

In Sec. 2, we present a brief background on the tools
employed. The main results and conclusions are provided
in Sec. 3 .

2. FEATURE-BASED ANALYSIS AND COST
ESTIMATOR

2.1 Similarity of control law functions

Let be a control law denoted by K. The time-dependent
actuation is given by b(t) = K(s(t)) where s(t) is the time-
dependent sensor reading. In GPC, we have an ensemble
of control laws {Ki}Ni=1 with N = NI × NG where NI is
the number of individuals in a generation and NG is the
number of generations. Each control law Ki is evaluated
in the experiment and a fitness J i is assigned to it. The
(dis)similarity between different control laws Ki and Kj

is measured based on the time series information and
their difference in performance. The latter incorporates
that very similar control laws may yield very different
performance. The elements of the square of the cross-
generational distance matrix, D = (Dij), are defined by

D2
ij = 〈Ki(s),Kj(s)〉i,j + α|J i − Jj | (1)

where 〈•〉 denotes a suitable time or ensemble average of
the differences between control laws Ki and Kj . The first
term in (1) is given by

〈Ki(s),Kj(s)〉i,j =
1

2M

M
∑

m=1

[

|Ki(si(tm))−Kj(si(tm))|2

+ |Ki(sj(tm))−Kj(sj(tm))|2
]

,

(2)
where si(tm) are the sensor readings collected at discrete
time tm, m = 1, . . . ,M , when Ki was applied.

Equation (2) represents the difference between control laws
Ki and Kj in an average sense evaluated in the relevant
sensor space and considering both forced attractors with
equal probability.

2.2 Multidimensional Scaling

Multidimensional Scaling (MDS) comprises a collection
of algorithms to determine a meaningful low-dimensional
embedding from a given distance matrix, in which the
similarity between objects is depicted by their mutual
distances. These geometry-preserving algorithms are par-
ticularly useful for visualization purposes of the relative
distances or similarity of high-dimensional data objects.
We employ particularly Classical Multidimensional Scal-
ing (CMDS) which originated from the works of Young
and Householder (1938) and Schoenberg (1935). The aim
of CMDS is to find a centered representation of points
Γ = [γ1 . . .γN ] with γi ∈ R

r where r = 2 here for
visualization purposes, such that the pairwise distances
of the objects approximate the true distances, i.e. ||γi −
γj ||2 ≈ Dij .

2.3 Determining the search space topology

The search space topology shall be approximated by the
evaluated control laws, particularly, by fitting a surface of
the form J = J(γ1, γ2) to the scattered data points given
by (γi

1, γ
i
2, J

i) for all control laws Ki, i = 1, . . . , N . This is
based on a Delaunay triangulation of the point ensemble
Γ. A triangulation-based cubic interpolation (interpolating
surface is C2 continuous) is employed for approximation
which yields for any point (γ1, γ2) within the convex hull
of the dataset Γ a unique value for J .

2.4 Analysis of genetic operators

The exploratory and exploitative nature of the genetic op-
erators is examined by a statistical analysis of the ancestry
of control laws. For this purpose, a coarse grid ofNf square
fields on the (γ1, γ2)−space is defined, which elements are
denoted by fm, m = 1, . . . , Nf . The conditional probabil-
ities from parent to offspring generation under different
operators is given by

P †
mn = Prob (offspring in fm|parent in fn, †) , (3)

with m,n = 1, . . . , Nf . The symbol † stands for one of
the four genetic operations and can assume letters E for
elitism, R for replication, C for cross-over, or M for muta-
tion. The probabilities are computed as relative frequen-
cies that a transition occurs and are column-stochastic, i.e.
∑Nf

m=1 P
†
mn = 1 for all n and operators †.

In particular, we are interested in the probabilities that a
parent lies in any of the tiles fk,

P †,from
mn = Prob (parent in fm|†) , (4)

and where the offspring will be located

P †,to
mn = Prob (offspring in fm|†) , (5)

under the action of the genetic operators. A more uniform
distribution is an indicator for the exploratory nature of
the operator, while a peak probability in a certain region
demonstrates its exploitative action.

2.5 Performance estimator for untested control laws

The increasing amount of information collected by testing
generations of individuals can be leveraged to develop a
performance estimator for newly bred, untested individ-
uals to discard potentially similarly performing control
laws and to specifically select exploratory or exploitative
control laws before their evaluation. Given the proximity
map obtained from applying CMDS to those generations
which are already evaluated, the estimator shall determine
the location γ̂

k, where the symbol ‘ˆ’ refers to estimated
values, of the untested individual. Selection criteria based
on the proximity to other control laws can then be ap-
plied to pick control laws for the next generation to be
evaluated. For this purpose, we employ Sparse Landmark
Multidimensional Scaling (sLMDS) (de Silva, 2004), which
computes embeddings for large distance matrices for which
MDS is generally very expensive, by first finding the
subspace from the distances of a subset of objects and
then estimating the coefficients of the remaining objects
in this subspace. This requires a suitable distance measure
between untested individuals and evaluated individuals.
An overview of the estimator is displayed in Fig. 1.
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Fig. 1. Schematic of the performance estimator for
untested control laws based on their location in the
proximity map.

Let the ensemble of newly bred, untested control laws be
denoted by {K̂i}NI

i=1. The elements of the squared distance
matrix between these control laws and already evaluated
ones are defined by

D̂2
ij = 〈K̂i(s),Kj(s)〉i,j + α|Ĵ i − Jj | (6)

where D̂ ∈ R
NI×N and Ĵ i is the estimated cost of control

law K̂i. The first term is given by

〈K̂i(s),Kj(s)〉i,j =
1

M

M
∑

m=1

|K̂i(sj(tm))−Kj(sj(tm))|2

(7)
evaluated in the sensor space of the already tested control
law. The estimated cost Ĵ i in the second term in (6) is
determined as the mean of the closest control laws (using
the k-nearest neighbor (KNN) search algorithm) in the
proximity map given by Γ1. The latter is determined
by applying CMDS to the distance matrix D1 evaluated
solely on the first term in (1). Finally, both terms of the
distance matrix (6) can be evaluated and the locations of
the untested control laws in the proximity map given in
the (γ1, γ2)−space can be estimated using sLMDS.

2.6 Selection criteria for control laws to be evaluated

In the following, we formulate three criteria based on
the proximity of the newly bred individuals to evaluated
control laws:

(A) max
i

min
k

||γ̂i − γk||2 (8)

(B) min
i

#(γk s.t. ||γ̂i − γk||2 < R) (9)

(C) min
i

||γ̂i − γopt||2 (10)

where i is the index of the untested and k the index of
the already evaluated control law, respectively. Instead
of selecting the best control law as defined above, these
criteria can also be used as ranking and the best, e.g.
10%, will be evaluated. Both criteria (A) and (B) measure
the isolatedness of individuals, i.e. search for control laws
that are farthest away from tested control laws or have the
fewest number of control laws in a certain radius R around
them. These can be interpreted as exploratory criteria. In
contrast, criterion (C) exploits regions of well performing
control laws by selecting the individual which is closest to
the best one γopt so far.

3. RESULTS

A closed-loop control law optimization using Linear Ge-
netic Programming Control (LGPC) is performed for drag
reduction of a car model (Li et al., 2016). The Reynolds
number of the model is ReH = U∞H

ν
= 3× 105. The flow

is controlled with 4 jet actuators with Coanda surface de-
flectors at all trailing edges of the model. We consider here
particularly single-input multiple-output feedback control,
where all four slits are controlled simultaneously. The 16
pressure sensors are distributed on the rear surface. The
control objective is a net energy saving from drag reduc-
tion which accounts for the actuation expenditure. LGPC
is applied for NG = 5 generations, each with NI = 50
individuals (control laws to be tested). A visualization
depicting the similarity of these control laws following
Sec. 2.1 and 2.2 is shown in Fig. 2. The broad distribution
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Fig. 2. Control law ensemble color-coded by percentile
ranking of their performance. Darker colors refer to
better performing individuals, i.e. the nearly black-
colored control laws represent the best 10% of all
evaluated control laws

of control laws shows that LGPC has successfully explored
the control space. The best control law(s) are located in
the right bottom corner with (γ1, γ2) ≈ (0.5,−0.5). The
interpolated fitness topology is displayed in Fig. 3 with
the clear optimum in the corner.

For the analysis of the operators, the (γ1, γ2)-space is
discretized into a coarse grid of 6×6 elements, i.e.Nf = 36.
The transition probabilities that an offspring lies in any
of these tiles under the action of the genetic operators
are displayed in Fig. 4. Mutation and cross-over should
contribute more to the exploration of the control law
space which is confirmed by a rather uniform distribution
across the grid. In contrast, elitism and replication shall
memorize better performing control laws which results in a
more local distribution. While the best control law selected
through elitism performs in each generation similarly well,
control laws selected through replication, i.e. the same
control law is evaluated in the next generation again,
exhibit a larger variance in their performance. Since only
one transition probability is non-zero for elitism, it can be
concluded that the best performing control law has been
already found in the second generation (in fact it has been
found in the first, but this can not be concluded from this
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Fig. 3. Control law search space topology obtained from a
Delaunay triangulation of the control laws (displayed
as small red dots) in (γ1, γ2)-space.
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Fig. 4. Probabilities that offspring lands on a specific grid
field of the coarse-grained γ−space due to genetic
operations. These probabilities are based on ancestry
information of all generations. For a better visualiza-
tion, probabilities are normalized by the maximum
probability, thus high probability is displayed as �

and zero probability as �.

plot). The analysis of the transition probabilities for each
generation (not shown here) suggests that mutation and
cross-over do not explore a farther region that is already
covered by the first generation.

The transition probabilities that a parent lies in any
of these tiles under the action of the genetic operators
are displayed in Fig. 5. The single non-zero transition
probability for elitism confirms that the best performing
control law (or one very close to that) exists indeed already
in the first generation. The breeding of a new generation
involves a tournament process where better performing
individuals are selected with higher probability. As the
minimum is located in the lower right corner, this results in
a downward shift of the parents from one generation to the
next, which is represented by the increasing probabilities
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Fig. 5. Analog to Fig. 4 but showing probabilities of origin
of parent generation on the coarse-grained γ−space
due to genetic operations.

for decreasing γ2. This global downward shift indicates the
convergence to the top-performing individuals.

In the following, the performance estimator of the untested
individuals in the proximity map and the selection criteria
are assessed. The approach is applied to the 5th generation
of control laws that is assumed to be not evaluated yet. The
proximity map computed on the first four generations with
the estimated and true locations of the 5th generation is
displayed in Fig. 6. Intriguingly, the estimated locations
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Fig. 6. Comparison of true and estimated locations of
individuals in the 5th generation based on information
from the four previous generations. True γi’s are
displayed as in Fig. 2. Estimated γ̂

i’s are depicted
by color-coded triangles (blue to green). The color of
the triangles matches the border color of the circle
associated with the true location (also connected by
straight line).

are in close proximity to the true ones, considering that
the control law distances are only evaluated on the sensor
space of the previous generations and the cost can only
be estimated from these distances. The mean and median



of the relative displacement error ||γ̂ −γ||2/||γ||2 are 0.37
and 0.18, respectively.

The selection criteria are employed to rank the 5th gener-
ation of individuals in the proximity map in Fig. 6. Then,
the best Ns individuals are selected (as for evaluation).
The overlap ratio as a function of the Ns best individuals
selected based on the true or estimated locations, respec-
tively, is displayed in Fig. 3. All criteria achieve a relatively
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Fig. 7. Assessment of selection criteria w.r.t. the true
performance of the control laws of the 5th generation.
Overlap of the P best individuals that are selected
according to the criteria (A), (B), or (C) applied to
the estimated and true locations, respectively.

high overlap of individuals when compared to the true
locations. Criterion (C) performs better than the other
criteria as it is more robust. The reason is that the loca-
tion estimation performs sufficiently well, i.e. individuals,
which perform well, are estimated to be in the proximity
of well-performing control laws and vice-versa. In contrast
criteria based on isolatedness are more sensitive to the
error of the positioning in the proximity map.

In summary, the analysis shows that LGPC explores
successfully the control space, the convergence to top-
performing individuals, and the exploratory and exploita-
tive nature of the genetic operators. Moreover, the location
estimation of untested control laws in the proximity map
performs surprisingly well. This is a critical enabler for
a faster GPC, that can be systematically geared towards
exploration or exploitation of the best control laws, by
selectively evaluating or discarding newly bred individuals.
Ongoing work investigates suitable selection criteria and
incorporating this approach to explore the control space
beyond the region represented by the first generation and
to avoid evaluation of similarly performing control laws.
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